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Abstract
Because of their abundance and high emissions rates, small reservoirs (< 0.01 km2) can be important emitters

of the greenhouse gases carbon dioxide and methane. However, emissions estimates from small reservoirs have
lagged those of larger ones, and efforts to characterize small reservoir emissions have largely overlooked varia-
tions in emissions pathways, times, and locations. We intensively sampled four small reservoirs in Georgia,
USA, during the summer to quantify the contribution and spatiotemporal variability of different emissions
pathways (CO2 and CH4 diffusion, CH4 ebullition). We used these data to evaluate the efficiency and accuracy
of different sampling schemes. Every emissions pathway was dominant in one reservoir on one sampling day,
and excluding ebullition caused misestimation between �89% and �15% of the total flux. Sampling only once
daily caused misestimation between �78% and 45%, but sampling twice or just after dawn (07:00 h) reduced
error. Sampling four or fewer locations caused misestimation between �85% and 366%, and our results indi-
cated that 6–20 sampling locations may be needed for reasonable accuracy. The floating aquatic macrophyte
Wolffia sp. (duckweed) appeared to exert control over emissions variability, and the consequences of not
accounting for variability were greater in a duckweed-covered reservoir. Our results indicate that sampling only
at 10:00 h (modal sampling time of prior efforts) may lead to the erroneous conclusion that reservoirs with high
photosynthetic biomass are CO2 sinks rather than sources. Improving estimation accuracy by accounting for
within-reservoir variation in emissions will facilitate more strategic management of these abundant, anthropo-
genic ecosystems.

Of the millions of reservoirs that exist globally, most have
surface areas < 0.01 km2 (Downing 2010). As a consequence of
their numeric abundance and positions in river networks as
recipients of substantial terrestrially derived carbon inputs
(Harvey and Schmadel 2021), these reservoirs have the capacity
to cumulatively emit carbon dioxide (CO2) and methane (CH4)
in comparable magnitudes to larger reservoirs (Grinham

et al. 2018; Ollivier et al. 2019a), which have been the primary
focus of research for the past two decades. Variation in the
dominant pathways, times, and locations of emissions in natu-
ral lakes and larger reservoirs has been shown to impact infer-
ences about the total magnitude of their emissions (Beaulieu
et al. 2016; Sieczko et al. 2020; Hounshell et al. 2023); however,
this variation has been poorly characterized in small reservoirs,
and prior efforts to estimate their emissions have frequently
relied on measurements of one pathway of emissions, at one
time during the day, and in few locations in the reservoir
(Wang et al. 2017; Webb et al. 2019; Ollivier et al. 2019a).
Unaccounted-for variation in emissions may lead to mis-
estimation of the contribution of small reservoirs to landscape
greenhouse gas (GHG) emissions, which may be reduced or
mitigated through management actions.

Reservoirs can yield high CO2 and CH4 emissions by con-
centrating substantial volumes of organic matter from both
terrestrial sources and in situ primary production, leading to
high rates of decomposition and respiration, depletion of dis-
solved oxygen (DO), and facilitation of anaerobic metabolic
pathways, including methanogenesis (Friedl and Wüest 2002).
The resulting CO2 and CH4 can be emitted from reservoirs by
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the diffusion of gas from high to low concentration across the
water–air interface (Deemer et al. 2016). CH4 can also be emit-
ted by bubbles that rise through the water column from the
sediment in a process known as ebullition.

These bubbles form when the partial pressure of the accumu-
lated gas surpasses the pressure on the sediments and over-
comes water surface tension (Harrison et al. 2017). Ebullition
can contribute substantially to radiative forcing from reservoirs
because much of the CH4 transported in bubbles can escape
oxidation in the water column (Bastviken et al. 2008), and one
molecule of CH4 has the same warming potential as 27 mole-
cules of CO2 (Forster et al. 2021). A global synthesis of GHG
emissions from mostly larger reservoirs found that ebullition
contributed on average 65% of total CH4 flux (Deemer
et al. 2016), yet ebullition has not been included in many past
efforts to characterize emissions from small reservoirs (Wang
et al. 2017; Ollivier et al. 2019a; Peacock et al. 2019; Webb
et al. 2019). If ebullition is a dominant pathway of CO2-
equivalent (CO2-eq) emissions from small reservoirs, sampling
efforts that fail to include it will underestimate total emissions.

Ebullition can exhibit spatial variation associated with depth
and distance from the reservoir inlet, which may also impact
total emissions estimates (Natchimuthu et al. 2016; Linkhorst
et al. 2021). At shallower depths, CH4 bubbles can grow and
escape the sediment more easily because there is lower hydro-
static pressure to overcome (Boudreau 2012). There is also a
diminished opportunity for CH4 to be oxidized during the
transport of bubbles through the shorter water column to the
water surface (Bastviken et al. 2008). At the reservoir inlet, ebul-
lition can be higher due to greater accumulation of watershed-
derived carbon as particles in transport settle (Natchimuthu
et al. 2016). This greater organic carbon availability can result
in higher CH4 production near the reservoir inlet (Maeck
et al. 2013). The influence of depth and inlet distance on rates
of CH4 ebullition can create longitudinal patterns of declining
ebullition from the inlet to the dam, which has been observed
in larger reservoirs (Beaulieu et al. 2016; McClure et al. 2020;
Linkhorst et al. 2021). Patterns of CH4 and CO2 diffusion have
also been observed in larger reservoirs arising from spatial het-
erogeneity in gas production and in rates of gas transfer
(Paranaíba et al. 2018). If small reservoirs exhibit substantial
spatial heterogeneity in emissions, failing to account for this
variability may lead to misestimation of emissions.

CO2 and CH4 diffusion, like many biogeochemical pro-
cesses, may exhibit daily temporal patterns due to the overrid-
ing influence of the sun on the light, wind, pressure, and
temperature conditions that can influence the magnitude of
emissions (Nimick et al. 2011; Natchimuthu et al. 2014;
Sieczko et al. 2020). If small reservoirs exhibit diel patterns of
diffusion, these patterns may be important to incorporate into
the estimation of daily emissions from discrete measurements
in time. Diffusion is a product of both the supply and transfer
of gases to the atmosphere, and both factors have drivers that
can exhibit diel patterns, potentially yielding diel fluctuations

in emissions (Cole and Caraco 1998). First, CO2 supply can be
altered by photosynthetic activity. When light is available for
photosynthesis, autotrophs can take up CO2, reducing its sup-
ply, yielding lower daytime CO2 emissions (Natchimuthu
et al. 2014; G�omez-Gener et al. 2021). Autotrophic activity
may also reduce daytime diffusive CH4 emissions by increas-
ing surface DO concentrations, promoting higher rates of CH4

oxidation and lower CH4 supply (Ford et al. 2002).
When transfer rather than supply processes dominate,

however, the pattern of lower daytime CO2 and CH4 diffu-
sion may be reversed. Wind is a major driver of surface tur-
bulence and gas exchange in reservoirs (Crusius and
Wanninkhof 2003). Windspeeds are generally higher during
the day, which can force higher rates of gas exchange
and, thus, higher daytime diffusive emissions (Sieczko
et al. 2020; Hounshell et al. 2023). Transfer processes can
also impact patterns of CH4 ebullition, with drops in hydro-
static pressure yielding high bubbling rates; however, few
studies have captured sub-daily measurements of CH4 emis-
sions to characterize the periodicity of bubbling events (but
see Grinham et al. 2011; Varadharajan and Hemond 2012;
Sieczko et al. 2020). If either supply or transfer processes
generate diel contrasts in CO2 and CH4 emissions, failing to
account for these temporal patterns—for example, by only
sampling during daytime hours—may also lead to mis-
estimation of total emissions.

To support accurate estimation of small reservoir GHG
emissions, we quantified (1) the contribution of different
pathways of emissions, (2) temporal variation in emissions,
and (3) spatial variation in emissions from four small reser-
voirs during the summer in the southeastern U.S. Specifically,
we measured CH4 and CO2 diffusion at 12 sampling stations
and CH4 ebullition at 25 sampling stations every 3 h over at
least one 24-h cycle in each of the small reservoirs. We used
data from this intensive sampling to simulate the conse-
quences of different sampling schemes to identify those that
efficiently yielded accurate estimates of total daily emissions.

Materials and methods
We sampled four small reservoirs within a 3 km2 area in Ath-

ens, GA, USA, in August–September 2022 (Supporting Informa-
tion Fig. S1). August and September are among the hottest
months of the year, and studies in similar climatic zones have
found that they contribute large proportions of total annual
emissions (van Bergen et al. 2019; McClure et al. 2020). The res-
ervoirs ranged in area from 0.0012 to 0.0077 km2 and in mean
depth from 0.80 to 2.03 m (Table 1). We estimated their water
residence time to be 19–46 d based on discharge estimates from
a regional regression equation with average annual precipita-
tion and watershed area (Gotvald 2017). At the time of sam-
pling, a floating macrophyte in the genus Wolffia, an
angiosperm in the family Lemnaceae hereon referred to as
duckweed, extensively covered the surface of one reservoir
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(Blue Herron). The other three sites had minimal or no macro-
phyte coverage and no visual evidence of a phytoplankton
bloom (Supporting Information Fig. S1). Although not an ini-
tial objective of our study, we took this opportunity to evaluate
the potential role of duckweed on the magnitude and spatio-
temporal patterns of emissions in addition to the objectives
outlined above. Every 3 h, we measured CO2 and CH4 diffusion
at 12 locations and CH4 ebullition at 25 locations for one to
two 24-h cycles in each reservoir to evaluate patterns in the
pathways, times, and locations of emissions (Table 1). Because
we observed a high CH4 concentration at the surface of Blue
Herron near the intake for the reservoir outlet, we additionally
calculated the flux of CH4 from degassing as water is discharged
over the reservoir outlet, which can be a major pathway of
CO2-eq emissions in larger reservoirs (Kemenes et al. 2007;
Maeck et al. 2013).

Measuring emissions pathways
We measured ebullition in each reservoir every 3 h over

24-h periods at 25 sampling stations (Supporting Information
Fig. S2a). The sampling stations were positioned at different
distances from the reservoir perimeter and divided among five
transects, which we installed using rope fixed diagonally
across the width of the reservoir to capture variation in sam-
pling station depth and distance to the inlet. At each sampling
station, we installed an ebullition trap by affixing it to the
rope with a zip tie. This method of trap installation permitted
us to sample ebullition without disturbing the sediment. The

ebullition traps consisted of inverted funnels with 18 cm
diameters fastened to 60 mL polypropylene syringes with sili-
cone sealant. At the start of the sampling, we filled the traps
with water by evacuating air through a three-way stopcock,
fastened polyethylene foam to the syringe for buoyancy, and
weighted the funnel so that only the syringe was above the
water. As bubbles rose from the sediment, they displaced the
water and collected at the top of the syringe where we emp-
tied the gas through the stopcock.

Every 3 h we recorded the volume of gas accumulated in the
ebullition trap syringe. If the volume exceeded 18 mL, we emp-
tied the trap and injected the contents into a pre-evacuated
12-mL glass vial with a chlorobutyl and PTFE/silicon septum.
At the end of the 24-h period, we emptied all traps, combining
gas from traps as necessary to obtain 18 mL. After all other mea-
surements had been taken, we physically disturbed the sedi-
ment in three locations along the edges of the reservoir to
collect fresh bubbles. We compared concentrations of the fresh
bubbles to those that had been left in the ebullition traps dur-
ing the sampling period to evaluate whether the oxidation of
CH4 bubbles in the traps impacted the concentrations of the
collected gas. On return to the lab, we analyzed the CH4 con-
centrations of the collected gas using an SRI Instruments
8610C Gas Chromatograph equipped with a methanizer and
Flame Ionization Detector (GC-FID). We did not find a signifi-
cant difference between the concentrations of gas collected in
the traps and fresh bubbles, so we used concentrations from
both collection methods to estimate total ebullition.

Table 1. Reservoir sampling dates, physical, and chemical characteristics. All sites were sampled in 2022. Temperature, dissolved oxy-
gen, and pH values reported here are spot measurements taken at four locations in each reservoir during every diffusive sampling flux
period. We also recorded dissolved oxygen using a continuous sensor at the top of the water column in the deepest location in the res-
ervoir (Supporting Information Fig. S4).

Site
name

Area
(km2)

Max
depth (m)

Mean
depth (m)

Residence
time (d)

Dates
sampled

Temperature
(�C)

Dissolved
oxygen (mg L�1) pH

Sister 0.0012 2.27 1.25 20 22–23 Aug Top: 27.4�0.6

Bottom: 26.7�0.4

Top: 7.0�0.5

Bottom:

5.5�1.4

Top: 8.0�0.4

Bottom: 7.6�0.4

Catfish 0.0018 1.98 0.80 19 06–07 Sep Top: 26.0�0.6

Bottom: 25.5�0.3

Top: 4.6�0.4

Bottom:

4.0�1.2

Top: 7.2�0.1

Bottom: 7.2�0.1

18–19 Sep Top: 22.0�0.6

Bottom: 21.6�0.3

Top: 5.4�0.6

Bottom:

4.8�1.2

Top: 7.2�0.1

Bottom: 7.2�0.1

Deans 0.0042 3.52 2.03 46 16–17 Aug Top: 28.6�0.6

Bottom: 28.0�0.4

Top: 6.2�0.5

Bottom: 4.4�2.1

Not available

30–31 Aug Top: 28.6�0.9

Bottom: 27.6�0.6

Top: 6.0�0.6

Bottom:

3.4�2.5

Top: 7.5�0.1

Bottom: 7.2�0.3

Blue Herron 0.0077 3.8 1.58 45 13–14 Sep

(duckweed

coverage: 100%)

Top: 24.4�1.1

Bottom: 23.2�1.1

Top: 0.7�0.8

Bottom: 0.3�0.4

Top: 6.9�0.3

Bottom: 6.8�0.2
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During each sampling period, we also measured the diffu-
sive flux of CO2 and CH4 at 12 of the sampling stations using
a portable GHG analyzer attached to a floating acrylic cham-
ber (Supporting Information Fig. S2b,c). We measured diffu-
sion directly adjacent to the ebullition traps at 2–3 of the
sampling stations in each transect. The analyzer measured
the headspace gas concentration in the chamber every 1 s
with a minimum contact time of 60 s (Off-Axis Integrated
Cavity Output Spectroscopy Analyzer, GLA131 series; ABB).
We calculated diffusive flux using the change in headspace
gas concentration over the contact period using the following
equation in which s is the rate of change in headspace gas
concentration over time (ppm s�1), V is the combined volume
of the chamber and tubing internal and external to the ana-
lyzer (m3), SA is the surface area of the chamber (m2), P is pres-
sure (atm), T is temperature (K), and R is the universal gas
constant (m3 atm K�1 mol�1).

flux¼ s
R�T� 1

P

� V
SA

:

Ebullition and changing light conditions during the diffu-
sive flux measurements resulted in portions of the headspace
concentration time series that were non-monotonic and
nonlinear. We, therefore, estimated the most frequently occur-
ring slope in the time series and used this value for our flux
calculations. Briefly, we calculated the slope of every
10 sequential points in the time series and computed the
maximum of the probability density function calculated using
kernel density estimation. We checked these slopes visually to
ensure they appropriately captured rates of diffusion.

To evaluate the daily contribution of the degassing pathway
of emissions from our small reservoirs, we calculated the flux by
taking the difference in CH4 concentration of water collected
near the dam intake (0.25 m below the water surface) and water
collected from the dam outlet. We multiplied this difference by
the dam discharge, which we estimated by measuring the time
required to fill a known volume (Maeck et al. 2013). We divided
this value by reservoir area to compare the contribution of
degassing to those of other emissions pathways.

To measure dissolved gas concentrations to calculate
degassing emissions, we followed the headspace equilibration
protocol in Goodman (2019), but modified the purge gas to
use ultra-zero air rather than ambient air. We also measured
the dissolved gas concentrations in the inlet stream and at the
bottom of the water column, 0.1 m from the sediment
(Supporting Information Table S1). Briefly, we took three repli-
cate, 60 mL bubble-free water samples using a Van Dorn bottle
0.25 m below the surface and 0.1 m from the sediment as well
as from the inlet and outlet streams to estimate dissolved gas
concentrations. On return to the lab, we introduced a 20 mL
headspace of ultra-zero air and equilibrated the headspace by
vigorously shaking the syringe for 5 min. We then injected
18 mL of the headspace into an evacuated 12 mL vial for gas

analysis. At the start of the sample run, we confirmed that
both CO2 and CH4 concentrations in the purge gas were
below the detection limit. We measured gas concentrations on
an SRI Instruments 8610C Gas Chromatograph as described
above and calculated the original dissolved gas concentration
from the measured headspace gas concentrations.

Scaling point estimates to the reservoir surface
To estimate diffusion and ebullition from the entire

surface of the reservoirs, we used sequential Gaussian simula-
tion with simple kriging of our measured fluxes to generate
equally probable realizations of emissions in unsampled areas
from which to characterize the global uncertainty in our
scaled emissions estimates (Delbari et al. 2009). For every sam-
pling period in every reservoir, we generated 500 simulations
of emissions across a 1-m2 grid. We discarded the top and bot-
tom 2.5% of realizations to estimate a 95% confidence inter-
val. To generate the realizations, we used the krige function in
the gstat package (Pebesma 2004; Gräler et al. 2016). Because
we did not have a CH4 concentration corresponding to every
measurement of gas volume from ebullition, we randomly
assigned every volume measurement to a concentration mea-
surement from the sampling event and simulated 25 realiza-
tions of ebullition using those concentrations. We repeated
this procedure 20 times for a total of 500 simulations of ebulli-
tion per sampling event. To calculate rates of emissions from
our interpolated estimates, we summed the values in each grid
cell at a time point, multiplied that value by the time elapsed
until the next sampling interval, summed across the sampling
intervals, and then divided by reservoir area.

Drivers of diel patterns of emissions
To characterize diel patterns in CO2 diffusion, CH4 diffusion,

and CH4 ebullition, we plotted and visually inspected the fluxes
interpolated with sequential Gaussian simulation across the sam-
pling intervals. We then ran models explaining the measured
point estimates of diffusive fluxes as a function of environmental
variables we expected to relate to diel variation in diffusion,
including DO at the top and bottom of the water column, win-
dspeed, light, and temperature (Natchimuthu et al. 2016; Sieczko
et al. 2020; Rudberg et al. 2021; Hounshell et al. 2023). We
recorded DO concentration 0.25 m below the water surface and
0.1 m from the sediment using a handheld meter (YSI Pro Plus)
at two locations near the edge of the reservoir and two in the
center during every sampling period. We took two 15 s inte-
grated wind speed measurements using a handheld anemometer
(HoldPeak 866) at approximately 1 m in height adjacent to the
chamber during every diffusive flux measurement. We quantified
light availability in two ways: (1) we measured illuminance every
15 min using a light logger installed on the bank of the reservoir
where there was no tree cover (UA-002-64; Onset) and (2) we
measured photosynthetically active radiation 0.5 m below the
reservoir surface (Odyssey). We recorded temperature approxi-
mately every 0.5 m of depth using a chain of temperature loggers
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installed at the deepest location in the reservoir (Onset). At this
location, we also recorded DO every 15 min at 0.25 m below the
water surface using a miniDOT (PME) to develop a continuous
record of DO during our study period. We ran all subsets of a
global linear mixed effects model predicting the diffusive flux of
CO2 or CH4 using these variables (windspeed, surface water tem-
perature, illuminance, and DO at the top and bottom of the
water column-averaged across the four sampling locations). In
each of these models, we scaled the predictors and used a ran-
dom intercept for the sampling event, which was the site and
date sampled. For the top models, we report unscaled parameter
estimates (Supporting Information Table S2). We were unable to
recover data from the PAR logger installed in Deans, so we ran
separate models evaluating the explanatory power of PAR on
CO2 and CH4 diffusion using data from the other three sites.

Effects of sampling locations
To evaluate the spatial patterns in CH4 ebullition, we ran a

mixed effects gamma regression model with a log link func-
tion to predict ebullition from (1) depth and (2) distance to
inlet, with a random intercept for sampling event. Because we
did not identify a temporal pattern in CH4 ebullition,
we aggregated ebullition across all sampling intervals in the
24-h sampling period for this analysis.

Simulating the consequences of sampling scheme
We conducted simulations using our measured flux data to

evaluate the consequences of sampling emissions with less
spatial and temporal intensity. We simulated the conse-
quences of sampling one to 11 locations for diffusion and one
to 24 locations for ebullition, while sampling the maximum
number of times in the 24-h period. For every possible num-
ber of sampling locations, we generated 100 bootstrapped rep-
licates for each pathway and calculated the number of
replicates that fell within the 95% confidence interval of our
interpolated emissions. We used 80% of simulations falling
within the 95% confidence interval as an arbitrary threshold
of estimation accuracy and calculated the number of sampling
locations required to reach this threshold for each pathway of
emissions (Robison et al. 2021). To calculate the mis-
estimation associated with sampling fewer sites, we simulated
every combination of one to four sampling locations where
we measured both ebullition and diffusion. We took the esti-
mation error to be the difference between the flux estimates
generated from simulations using these locations and esti-
mates generated using all of the sampled locations. To evalu-
ate the consequences of sampling with less temporal
intensity, we simulated sampling fluxes at every combination
of one to two times during the day at the maximum number
of sampling locations. To calculate the estimation error, we
took the difference between these estimates and the fluxes
estimated using all of the sampled times. To find the combina-
tions of times that minimized estimation error across sites, we
calculated the cumulative estimation error as the sum of the

errors from individual sites. Because Blue Herron had substan-
tially different diel patterns from the other three sites, we
determined the times that minimized cumulative estimation
error separately for Blue Herron.

We conducted all analyses in R version 4.2.1 and produced
figures using ggplot2 version 3.4.2 (Wickham 2016; R Core
Team 2022). We ran the mixed models using the lmer and
glmer functions in the lme4 package version 1.1-32 (Bates
et al. 2015).

Results
Contributions of emissions pathways

Total interpolated emissions from the four reservoirs across
the six sampling events ranged from 2.10 to 17.8 g CO2-
eq m�2 d�1 (Supporting Information Table S3). Each pathway
of emissions (CO2 diffusion, CH4 diffusion, or CH4 ebullition)
contributed the most CO2-eq in at least one reservoir on one
sampling day (Fig. 1). CO2 diffusion contributed the most
CO2-eq emissions from Deans and the 18 and 19 September
Catfish sampling (50–77% of total CO2-eq). During the 06 and
07 September Catfish sampling, CO2 diffusion and CH4 ebulli-
tion contributed approximately equally to total CO2-eq emis-
sions (46% and 49%, respectively). CH4 ebullition
contributed most from Sister (89% of total CO2-eq) and CH4

diffusion contributed most from Blue Herron (45% of total
CO2-eq), which was the only reservoir in which rates of CH4

diffusion exceeded CH4 ebullition (Fig. 1). The high rate of
CH4 diffusion in Blue Herron (the reservoir covered in duck-
weed) was consistent with its high surface CH4 concentration
of 98.7 μmol L�1. The surface CH4 concentrations for the
other three sites were two orders of magnitude lower, ranging
from 0.51 to 0.98 μmol L�1 (Supporting Information
Table S1). Despite the high concentration of dissolved CH4 at
Blue Herron, degassing emissions at this site contributed only
0.0003 g CH4 m

�2 d�1 or 0.008 g CO2-eq m�2 d�1, less than
0.05% of total CO2-eq emissions, due to the low discharge
from the reservoir on the day of sampling (1.6 � 10�5 m3 s�1).
The concentration of CH4 in the outlet exceeded the concen-
tration near the dam intake on all but one other sampling
date: Deans on the 16–17 August. Degassing emissions from
this site were an order of magnitude lower than those
from Blue Herron at 0.00003 g CH4 m

�2 d�1 or 0.0007 g CO2-
eq m�2 d�1, which was less than 0.001% of total CO2-eq emis-
sions from Deans on 16–17 August.

The high surface CH4 concentration at Blue Herron is consis-
tent with its persistent anoxia. During the sampling period, sur-
face DO at the continuous sampling station near the center of
the pond never exceeded 0.2 mg L�1 (Supporting Information
Figs. S3, S4). In contrast, the minimum surface DO concentration
at the other three sites was 4.9 mg L�1 in Deans, 7.2 mg L�1 in
Sister, and briefly 0.4 mg L�1 in Catfish before rising to an aver-
age of 5.5 mg L�1 (Supporting Information Fig. S3). Across all res-
ervoirs, CO2 diffusion ranged on average from �0.07 to
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3.62 g CO2 m�2 d�1, CH4 diffusion ranged from 0.01 to
0.29 g CH4 m�2 d�1, and CH4 ebullition from 0.02 to 0.23 g
CH4 m�2 d�1 (Supporting Information Table S3).

Diel patterns and drivers
We found no evidence of a diel pattern in CH4 diffusion at

Catfish, Deans, or Sister. At Blue Herron (the reservoir with
duckweed), there was a distinct day–night pattern in CH4 dif-
fusion (g m�2 h�1), with the highest rates of diffusion at mid-
day and declining rates in the late afternoon and night
(Fig. 2). None of the models explaining CH4 diffusion using
environmental variables were more parsimonious than the
intercept-only model. The next most parsimonious model
(ΔAICc = 8.54) included DO at the top of the water column,
which was negatively associated with CH4 diffusion
(Supporting Information Fig. S5, β = �0.001 � 0.0003,
p = 0.003, t = �3.21, n = 573, R2 = 0.17).

Blue Herron also demonstrated a diel pattern of CO2 diffu-
sion distinct from those of the other reservoirs and from its
diel pattern of CH4 diffusion. The reservoir was a net sink for
CO2 in the late morning from 10:00 h to 13:00 h, after which
it switched to being a net source (Fig. 2a). The rate of emis-
sions increased through the night until it declined in the early
morning hours. In contrast, in the other sites, there was only
a slight dip in emissions at night (Fig. 2; Supporting Informa-
tion Fig. S6). Because of the contrasting diel patterns of CH4

and CO2 diffusion, Blue Herron did not exhibit a diel pattern
in total CO2-eq emissions. In the other reservoirs, the
pattern of lower CO2 diffusion in the late afternoon and night
did not result in a clear diel pattern in CO2-eq emissions
because of the lack of diel patterns in CH4 diffusion and

ebullition; however, all reservoirs had variable CO2-eq emis-
sions throughout the day (Fig. 2).

The most parsimonious model explaining CO2 diffusion
included only DO at the top of the water column, which was
negatively associated with CO2 diffusion (Supporting Informa-
tion Fig. S7, β = �0.028 � 0.008, p = 0.008, t = �3.50,
n = 573, R2 = 0.14) (Supporting Information Table S2). The
next most parsimonious models were the intercept-only
model (ΔAICc = 3.16) and the model including water temper-
ature at the top of the water column (ΔAICc = 5.00). Tempera-
ture was negatively associated with CO2 diffusion (Supporting
Information Fig. S8, β = �0.024 � 0.01, p = 0.033, n = 573,
t = �2.49, R2 = 0.12), and this relationship strengthened
when Blue Herron was excluded (β = �0.036 � 0.006,
p < 0.001, n = 477, t = �6.06, R2 = 0.37) (Supporting Informa-
tion Table S2). Blue Herron had the highest CO2 concentra-
tion (560 μmol L�1) of the reservoirs, 4 times greater than the
next highest concentration, which occurred in Catfish
(138 μmol L�1), and 14 times greater than the lowest concen-
tration, which occurred in Sister (40.2 μmol L�1) (Supporting
Information Table S1).

Spatial variation
As predicted, both depth and distance to the inlet had neg-

ative associations with ebullition; however, only depth had a
parameter estimate that did not overlap zero (inlet distance:
�0.001 � 0.003, n = 142, t = �0.41, p = 0.68; depth:
�0.30 � 0.12, t = �2.4, p = 0.02) and even combined these
predictors explained little variation in ebullition (R2 = 0.03).
However, when Blue Herron was excluded, both predictors
had greater negative associations with ebullition (inlet dis-
tance: �0.019 � 0.0034, n = 118, t = �5.48, p < 0.001; depth:

Fig. 1. CO2-eq flux rates by emission pathway from estimates interpolated using sequential Gaussian simulation. Bars represent average values and error
bars represent the simulated 95% confidence interval. The date listed is the start date of the 24-h sampling period.
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Fig. 2. Diel patterns in interpolated (A) CO2 diffusion, (B) CH4 diffusion, (C) CH4 ebullition, and (D) total CO2-eq emissions. Points represent average
estimates and error bars represent the simulated 95% confidence interval. The times depicted for CH4 ebullition are the end of the ebullition measure-
ment period (i.e., when the gas volume was recorded). The 07:00 diffusive flux sampling for Deans on 16 August was delayed until 09:00 due to rain.
These values were used to calculate total CO2-eq flux over a 24-h period, but are not depicted here. See Supporting Information Fig. S6 for values
depicted on free y-axis scales.
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�0.49 � 0.11, n = 118, t = �4.35, p < 0.001) and the model
explained more of the total variation in ebullition (R2 = 0.44).
These parameter estimates correspond to a 39% decline in
ebullition with every 1 m increase in depth and a 2% decline
with every 1 m increase in distance from the reservoir inlet.
Plots of CO2 diffusion indicated a spatial pattern in Blue
Herron, where every diffusive flux measurement was taken
over duckweed (Supporting Information Fig. S2b). To confirm
this spatial pattern, we calculated Moran’s I to test for spatial
autocorrelation for every sampling period and found that dur-
ing six of eight time periods, measurements of CO2 diffusion

were spatially autocorrelated, indicating that locations closer
together in the reservoir had more similar fluxes than those
far apart (Moran’s I: 0.15–0.43) (Supporting Information
Fig. S9). None of the other sites exhibited spatial patterns in
CO2 diffusion or had significant periods of spatial autocorrela-
tion (Supporting Information Figs. S2b, S9).

Sampling scheme efficiency and accuracy
All sites except Blue Herron reached the arbitrary accuracy

threshold (80% of simulations falling within the 95% confi-
dence interval of the estimate calculated using all of the data)

Fig. 3. The percentage of simulated samplings within the 95% confidence interval of the interpolated fluxes at iterative numbers of random sampling
locations for (A) CO2 diffusion, (B) CH4 diffusion, (C) CH4 ebullition.
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when six locations were sampled for CO2 diffusion and eight
for CH4 diffusion. Catfish and Deans reached the accuracy
threshold for CH4 ebullition at nine sampling locations, Sister
at 17, and Blue Herron at 20 locations (Fig. 3). The estimation
errors for sampling one to four locations in the reservoir,
which is the difference between the fluxes calculated using a
limited number of sampling locations and fluxes calculated
using all of the locations, ranged from �10.43 to 13.47 g CO2-
eq m�2 d�1 and �85% to 366% of the total CO2-eq flux.

Estimation errors for sampling only once during the day
ranged from �5.61 to 2.56 g CO2-eq m�2 d�1 or �78% to 45%
of the total flux, but sampling at certain times or combina-
tions of time substantially reduced estimation error. Sampling
at 10:00 h and 22:00 h minimized the cumulative estimation
error for CO2 diffusion for the duckweed-free reservoirs: Cat-
fish, Deans, and Sister. Other combinations of daytime and

nighttime sampling also had low cumulative estimation error
(Fig. 4). The median estimation error from these individual
reservoirs was 0.31 g CO2 m

�2 d�1, and the maximum estima-
tion error was �1.05 g CO2 m

�2 d�1, 33% of the total diffusive
CO2 flux. Although there was no distinct diel pattern of CH4

diffusion in these reservoirs (Supporting Information Fig. S6),
there was variation in rates of emissions throughout the day.
Diel variation in these reservoirs ranged from 0.001 g
CH4 m

�2 h�1 to 0.008 g CH4 m
�2 h�1. As a result, the median

estimation error from these individual reservoirs was 0.002 g
CH4 m

�2 d�1 and the maximum estimation error was 0.01 g
CH4 m

�2 d�1, 87% of the total diffusive CH4 flux. Cumulative
estimation error for CH4 diffusion was minimized by sampling
at 13:00 h and 22:00 h (Fig. 4).

For the duckweed-covered reservoir, Blue Herron, estima-
tion error was minimized by sampling at 13:00 h and 04:00 h

Fig. 4. (A) CO2 diffusion (g CO2 m�2 d�1), (B) CH4 diffusion (g CH4 m�2 d�1), (C) CH4 ebullition (g CH4 m�2 d�1), and (D) CO2-eq (g CO2-eq
m�2 d�1) flux estimation error associated with different combinations of one to two sampling times throughout the day. The values along the diagonal
represent sampling at only one time during the day.
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(0.77 g CO2 m
�2 d�1, 21% of the total diffusive CO2 flux);

however, sampling just once at 07:00 h was among the combi-
nations of times with the lowest estimation error (0.89 g
CO2 m

�2 d�1, 24% of the total diffusive CO2 flux). In contrast,
sampling at 10:00 h, which is the modal sampling hour for
several GHG sampling efforts (G�omez-Gener et al. 2021;
NEON 2023), had the highest estimation error for CO2 diffu-
sion (�7.60 g CO2 m

�2 d�1, 210% of the total diffusive CO2

flux) (Fig. 4). For CH4 diffusion, sampling at 10:00 h and
22:00 h minimized estimation error (�0.0005 g CH4 m

�2 d�1,
0.2% of the total diffusive CH4 flux); however, like with CO2

diffusion, sampling once at 07:00 h yielded low estimation
error for CH4 diffusion (0.004 g CH4 m

�2 d�1, 1.3% of the
total diffusive CH4 flux) (Fig. 4).

Discussion
Our results indicate that common practices of sampling

small reservoir GHG emissions (i.e., not measuring ebullition,
sampling at one time during the day, and sampling few loca-
tions in the reservoir) can lead to substantial misestimations
of total CO2-eq flux from these ecosystems. Excluding ebulli-
tion from our estimates led to an underestimation of the total
flux by �0.63 to �6.19 g CO2-eq m�2 d�1 or �15% to �89%
of the total flux. Sampling only once during the day led to
misestimation from �5.61 to 2.56 g CO2-eq m�2 d�1 or �78%
to 45% of the total flux. Sampling a few locations in the reser-
voir (four or fewer) led to misestimation between �10.43 to
13.47 g CO2-eq m�2 d�1 or �366% to 85% of the total flux.
Our results indicated that 6–20 sampling locations may be
required for reasonable estimation accuracy, depending on the
characteristics of a reservoir and the emissions pathway con-
sidered. We observed a distinct magnitude, spatial, and diel
pattern of CH4 and CO2 emissions in the duckweed-covered
reservoir compared to the other reservoirs, and the conse-
quences of limited sampling were more severe in the duck-
weed reservoir. Our results can inform efforts to scale point
measurements of emissions in space and in time in smaller
waterbodies (< 0.01 km2), for which eddy covariance and
other high-temporal resolution methods used for large reser-
voirs have limited effectiveness (Zhao et al. 2019).

Magnitude of emissions
Summer emissions from the four small reservoirs we

sampled were within the range of values observed pre-
viously for reservoirs. Mean CO2 emissions were higher
(2.25 g CO2 m

�2 d�1) and mean CH4 emissions (0.145 g
CH4 m

�2 d�1) were slightly lower than the mean emissions
from a global synthesis of reservoir emissions (1.21 g
CO2 m

�2 d�1 and 0.161 g CH4 m
�2 d�1); however, both gases

were firmly within the range of previous observations (�1.30
to 9.66 g CO2 m

�2 d�1 and 0–5.26 g CH4 m
�2 d�1) (Deemer

et al. 2016). Notably, only two of the 144 reservoirs with diffu-
sive CH4 fluxes measurements in Deemer et al. (2016) had a

higher diffusive CH4 flux than the duckweed reservoir (0.29 g
CH4 m

�2 d�1), and only 8 of 54 had a higher ebullitive flux of
CH4 than the duckweed reservoir (0.23 g CH4 m

�2 d�1). How-
ever, we only measured emissions during the summer, and
prior evidence of seasonal patterns in emissions suggests that
annual diffusive and ebullitive fluxes of CH4 may be lower
than the values reported here (van Bergen et al. 2019). Com-
paring our findings to waterbodies in the same size class that
were not formed by dams, we found both a higher mean CO2

flux (2.25 vs. 0.933 g CO2 m
�2 d�1) and CH4 flux (0.145

vs. 0.010 g CH4 m
�2 d�1) from our small reservoirs (Holgerson

and Raymond 2016).
A limitation of our ability to ascribe the patterns in gas

fluxes we observed to the presence of duckweed is that duck-
weed was only abundant in one of our reservoirs. However,
the patterns we observed were consistent with the overriding
control of emissions by floating macrophytes which has been
observed in previous studies (Bastviken et al. 2010; Rabaey
and Cotner 2022). The rate of CO2-eq emissions (g m�2 d�1)
in the duckweed reservoir was, on average, 5.5 times greater
than the other three reservoirs, and CH4 emissions from this
site accounted for 80% of total CO2-eq emissions. Duckweed
likely elevated CH4 emissions by limiting O2 exchange across
the air–water interface and loading labile organic carbon to
the sediments, generating persistent anoxia and fueling
methanogenesis (Morris and Barker 1976; Kosten et al. 2016;
Rabaey and Cotner 2022).

Although small reservoirs have the capacity to emit large
quantities of GHGs, they also have the capacity to bury
large quantities of carbon. One study found that organic car-
bon burial rates in eutrophic, midwestern U.S. reservoirs were
three orders of magnitude higher than mean burial rates in
temperate forests (Downing et al. 2008). These burial rates far
exceeded rates of CO2 diffusion from these reservoirs (Pacheco
et al. 2014). In contrast, in a temperate, eutrophic pond, car-
bon burial was only 7.4% of the annual emissions (van Bergen
et al. 2019). The carbon balance of our small reservoirs is
unknown. While duckweed is very labile, its breakdown in the
sediments of the duckweed reservoir may be slow. Our
duckweed-dominated reservoir was anoxic for much of the
year (unpublished data), potentially resulting in the slow
breakdown of duckweed biomass and subsequent carbon stor-
age. Additional work on carbon burial is needed to understand
the role of small reservoirs in landscape carbon balance
(Holgerson et al. 2024).

Diel patterns
The duckweed-free reservoirs demonstrated slight declines

in CO2 diffusion at night. In contrast to studies in larger reser-
voirs, this pattern did not appear to be associated with higher
daytime wind speeds; however, we observed a relatively small
range of wind speeds (0–7.2 m s�1, mean: 0.4 m s�1) and it is
possible that a positive relationship between wind speed and
CO2 diffusion would be apparent with windier conditions
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(Crusius and Wanninkhof 2003). Wind may also be a less
important driver of CO2 diffusion in these reservoirs because
of their small area and insulation by trees (Vachon and Prai-
rie 2013). In the duckweed reservoir, the net uptake of CO2

from 10:00 h to 13:00 h is consistent with a mid-morning
peak in CO2 fixation, which was previously observed in a
small lake covered in a different duckweed species (Lemna
minor) (Filbin and Hough 1985). Although solar radiation may
be more intense later in the day, an afternoon depression in
rates of CO2 fixation may occur due to photoinhibition and
photorespiration (Filbin and Hough 1985), consistent with
the increase in CO2 emissions we observed in the afternoon in
the duckweed reservoir. In the duckweed-free reservoirs, the
dominant primary producers were submerged below the water
surface. Attenuation of light through the water column may
have reduced the strength of photoinhibition, resulting in a
later peak in autotrophic CO2 uptake and a minimum in CO2

emissions (Walsby 1997). Although we did not observe a rela-
tionship between CO2 emissions and PAR measured at a fixed
station in the reservoir, we did observe a negative relationship
between CO2 emissions and surface DO, which is consistent
with autotrophs driving diel patterns of CO2 emissions, as in
the mechanism proposed above. Our simulations indicated
that sampling once during the day and once at night in the
duckweed-free reservoirs resulted in low estimation errors,
with the smallest errors resulting from sampling at 10:00 h
and 22:00 h. Estimation errors in the duckweed reservoir were
much larger but were minimized by sampling at 13:00 h and
04:00 h or at 07:00 h alone. If we had sampled at 10:00 h
only, which is the modal sampling time of prior efforts
(G�omez-Gener et al. 2021; NEON 2023), we could have con-
cluded that the duckweed reservoir was a sink for CO2 when it
was a source, emphasizing the importance of accounting for
diel patterns of emissions.

The duckweed reservoir was the only site that exhibited a
diel pattern of CH4 diffusion. It had high rates of diffusion in
the late morning and early afternoon (10:00–13:00 h),
followed by a sharp decline in the late afternoon and persis-
tently low rates through the night (16:00–01:00 h), and rising
again in the early morning (04:00–07:00 h). In contrast to
findings in other lentic waterbodies, diel variations in wind
speed did not explain the higher daytime diffusive CH4 fluxes
we observed (Liu et al. 2017; Sieczko et al. 2020). In this reser-
voir, the peak in light coincided with the peak in surface DO,
indicating a possible contribution by duckweed to surface
DO. CH4 oxidation during these periods of elevated DO may
have decreased CH4 diffusion from the reservoir surface
(Kosten et al. 2016). Consistent with this mechanism, the
strongest association between CH4 diffusion and an environ-
mental variable across all reservoirs was the negative associa-
tion with surface DO; however, the model including surface
DO explained little variation (R2 = 0.17), indicating that other
mechanisms may be generating diel patterns in CH4 diffusion,
alone or in conjunction with CH4 oxidation. Estimation errors

for CH4 diffusion in the duckweed reservoir were minimized
with sampling at 10:00 h and 22:00 h or at 07:00 h alone.

The amplitude of diel CO2 emissions in the duckweed reser-
voir (0.55 g CO2 m

�2 h�1) was at the high end of the range
observed in previous studies of sub-daily emissions from lentic
inland waters. A similar amplitude (0.56 g CO2 m

�2 h�1) was
observed in ponds in the subarctic wetland region of the Hud-
son Bay Lowlands, Canada, where CO2 emissions were attrib-
uted to degrading peat (Hamilton et al. 1994). The duckweed
reservoir amplitude was 2.6 times higher than that observed
in a larger eutrophic reservoir (0.119 km2) (Hounshell
et al. 2023). We observed the lowest amplitude in Sister,
which was an order of magnitude lower (0.042 g
CO2 m

�2 h�1) than the duckweed reservoir. The diel variation
in CO2 emissions from Sister was similar to the minimum
amplitude reported in a synthesis of CO2 emissions from
13 northern latitude lakes and reservoirs, which ranged widely
in size, nutrient, and humic states (Golub et al. 2021). For
CH4 diffusion, the duckweed reservoir was the only reservoir
that exhibited a diel pattern. Like CO2 diffusion, the ampli-
tude of diel CH4 diffusion from the duckweed reservoir
(0.011 g CH4 m

�2 h�1) was at the high end of the range of
previous observations. It was equal to the amplitude of CH4

emissions measured over dense patches of water hyacinth
(Pontederia sp.) in shallow lakes in the Pantanal, Brazil
(Bastviken et al. 2010). The high amplitude of variation for
CO2 and CH4 diffusion in the duckweed reservoir highlights
the special consideration that sub-daily, temporal variation
may merit in characterizing emissions from smaller, floating
macrophyte-covered reservoirs. The diel patterns we observed
are consistent with substantial autotrophic control of emis-
sions and were consequential for estimating total emissions
from the duckweed reservoir. However, we only sampled emis-
sions during the summer, and lower primary producer bio-
mass and temperature in the winter may result in lower diel
fluctuations in diffusion (Ollivier et al. 2019b). Sub-daily varia-
tion, therefore, may be less important for emissions estimates
at other times of the year. Further investigation of seasonal
changes in diel patterns of emissions from small reservoirs
merits further study.

Spatial patterns
In the duckweed-free reservoirs, we observed a decline in

daily rates of CH4 ebullition with increasing distance from the
inlet and depth, consistent with patterns observed in larger
reservoirs (Beaulieu et al. 2016; McClure et al. 2020). Terres-
trial organic matter delivered by the inlet streams may have
dominated organic matter inputs, creating a pattern of higher
sediment organic matter availability near the reservoir inlet.
In these reservoirs, CH4 ebullition declined by 2% for every
1 m increase in distance from the reservoir inlet and 39% for
every 1 m increase in depth. However, in the duckweed reser-
voir, the extensive macrophyte coverage may have more
evenly distributed organic matter across the reservoir
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sediments and persistent water column anoxia may have
reduced rates of CH4 oxidation, eliminating the decline in
ebullition with increasing inlet distance and depth that we
observed in the duckweed-free reservoirs. In general, more
sampling locations were required to accurately estimate fluxes
in the duckweed reservoir than in the duckweed-free reser-
voirs. A high degree of estimation accuracy was reached in the
duckweed-free reservoirs when at least 6 locations were sam-
pled for CO2 diffusion, 8 locations for CH4 diffusion, and
17 locations were sampled for ebullition. In the duckweed res-
ervoir, 12 or more sampling locations were required to esti-
mate CO2 diffusion, 8 locations for CH4 diffusion, and
20 locations for CH4 ebullition.

Extrapolation to other small reservoirs
To interpret the implications of our findings, it is important

to consider whether the differences we observed between the
duckweed-dominated and duckweed-free reservoirs can be
extrapolated to small reservoirs with high biomass of other
dominant primary producers. Elevated diel variation in CO2

emissions has been linked to photosynthetic uptake by large
stands of submerged and emergent macrophytes, as well as
blooms of phytoplankton (Maberly 1996; Kragh et al. 2017;
Golub et al. 2021). However, the exact diel patterns of emis-
sions may differ by dominant primary producer. For example,
primary producers differ in their susceptibility to photo-
inhibition (Wetzel 2001), which could impact diel patterns of
photosynthesis, CO2 supply, and flux. Because photosynthesis
can control CO2 fluxes, we may also expect greater spatial pat-
terns of CO2 emissions in small reservoirs with high primary
producer biomass, as observed in the duckweed reservoir.
However, primary production may not be a major driver of
CO2 emissions if a reservoir receives large external inputs
of CO2 (e.g., in groundwater), even when primary producer
biomass is high; in this case, diel and spatial patterns of CO2

diffusion may not be apparent (van Bergen et al. 2019).
Diel patterns of CH4 diffusion can arise in reservoirs domi-

nated by primary producers other than duckweed, although the
patterns and mechanisms may differ (Hamilton et al. 1994;
Bastviken et al. 2010). We expect that other floating macro-
phytes are likely to behave similarly to duckweed in enhancing
CH4 oxidation, potentially generating a pattern of lower CH4

emissions when surface DO is high due to photosynthesis
(Kosten et al. 2016; Iguchi et al. 2019). In reservoirs dominated
by rooted macrophytes, vegetation-mediated emissions could
modify these temporal patterns by transporting CH4 from the
water column or sediment pore water to the atmosphere
(Whiting and Chanton 1996; Bolpagni et al. 2007). The impact
of high phytoplankton biomass on diel patterns of CH4 fluxes
is uncertain; previous studies have identified both the presence
and absence of a diel pattern of CH4 fluxes in lentic ecosystems
with high phytoplankton biomass (van Bergen et al. 2019;
Waldo et al. 2021). Primary producer identity may be an impor-
tant factor in determining diel patterns of CH4 diffusion, and

floating macrophyte-dominated small reservoirs may exhibit
distinct patterns compared to those dominated by other types
of macrophytes and algae.

Conclusion
Several recent inventories of GHG emissions from inland

waters have specifically identified the need for emissions esti-
mates from abundant small reservoirs (Deemer and Hol-
gerson 2021; Pilla et al. 2022; Lauerwald et al. 2023). By
intensively sampling small reservoirs in space and time, we iden-
tified key considerations for efficiently estimating emissions from
point measurements. Our results indicate that 07:00 h, just after
dawn, may be an efficient time to sample while sampling later in
the morning or early afternoon may result in greater estimation
errors due to diel patterns of CO2 and CH4 diffusion. Sampling
6–20 locations in the reservoir may be required for reasonable
estimation accuracy. Our results suggest that more sampling
locations may be required to characterize emissions from
duckweed-covered reservoirs than duckweed-free reservoirs.
Selecting sampling locations for ebullition with varying depth
and distance to the reservoir inlet may also improve estimation
accuracy, as our results indicate that ebullition declined with
increasing depth and declined with increasing distance to the
inlet in all sites except for the duckweed-covered reservoir. These
results can inform efforts to characterize emissions from small
reservoirs and include them in regional and global inventories of
GHG emissions from inland waters.

Accurate emissions estimates can also facilitate the identifi-
cation of drivers of high GHG emissions, which can reveal
management strategies to reduce emissions from these sys-
tems (Malerba et al. 2022; Nijman et al. 2022). For example,
our results highlight management methods to reduce duck-
weed coverage as potential strategies to reduce GHG emissions
from small reservoirs. While the impact of duckweed manage-
ment on small reservoir GHG emissions has not, to our knowl-
edge, been evaluated, duckweed removal from small ponds
and reservoirs is a common practice with the potential to
enhance DO content and reduce organic matter loading
(Lembi 2009), decreasing rates of methanogenesis. Duckweed
harvest from high-nutrient ponds has even been rec-
ommended as a method to generate feed and fertilizer while
reducing stream nitrogen loads from farms (Femeena
et al. 2022), highlighting a potential synergy between nutrient
and GHG management. With over 2 million small reservoirs
in the continental United States alone, opportunities to reduce
GHG emissions from small reservoirs are abundant.

Data availability statement
The data and code used to generate all analyses and figures

can be found in the following repository: https://zenodo.org/
doi/10.5281/zenodo.10573817.
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